Swedish language support (natural language processing) for IBM Content Analytics (ICA)

Findwise has now extended the NLP (natural language processing) in ICA to include both support for Swedish PoS tagging and Swedish sentiment analysis.

IBM Content Analytics with Enterprise Search (ICA) has its strength in natural language processing (NLP) which is achieved in the UIMA pipeline. From a Swedish perspective, one concern with ICA has always been its lack of NLP for Swedish. Previously the Swedish support in ICA consisted only of dictionary-based lemmatization (word: “sprang” -> lemma: “springa”). However, for a number of other languages ICA has also provided part of speech (PoS) tagging and sentiment analysis. One of the benefits of the PoS tagger is its ability to disambiguate words, which belong to multiple classes (e.g. “run” can be both a noun and a verb) as well as assign tags to words, which are not found in the dictionary. Furthermore, the POS tagger is crucial when it comes to improving entity extraction, which is important when a deeper understanding of the indexed text is needed.

Findwise has now extended the NLP in ICA to include both support for Swedish PoS tagging and Swedish sentiment analysis. The two images below shows simple examples of the PoS support.

Example when ICA uses NLP to analyse the string "ICA är en produkt som klarar entitetsextrahering"Example when ICA uses NLP to analyse the string "Watson deltog i jeopardy"

The question is how this extended functionality could be used?

IBM uses ICA and its NLP support together with several of their products. The jeopardy playing computer Watson may be the most famous example, even if it is not a real product. Watson used NLP in its UIMA pipeline when it analyzed its data from sources such as Wikipedia and Imdb.

One product which leverage from ICA and its NLP capabilities is Content and Predictive Analytics for Healthcare. This product helps doctors to determine which action to take for a patient given the patient’s journal and the symptoms. By also leveraging the predictive analytics from SPSS it is possible to suggest the next action for the patient.

ICA can also be connected directly to IBM Cognos or SPSS where ICA is the tool which creates structure to unstructured data. By using the NLP or sentiment analytics in ICA, structured data can be extracted from text documents. This data can then be fed to IBM Cognos, SPSS or non IBM products such as Splunk.

ICA can also be used on its own as a text miner or a search platform, but in many cases ICA delivers its maximum value together with other products. ICA is a product which helps enriching data by creating structure to unstructured data. The processed data can then be used by other products which normally work with structured data.