What are organisations planning to focus on to impove Search and Findability?

This year’s Search and Findability survey gave us a good indication of upcoming trends on the market. The activities and technologies that organisations are planning to start working with, are all connected to improving effectiveness. By using technology to automatically perform tasks, and by understanding the users’ needs and giving them a tailored search experience, there is a lot of potential to save time and effort. 

Top 5 activities organisations will focus in:

  • Natural language search interface, e.g. Query aid or chatbots (29%)
  • Personalisation e.g. tailored search experience (27%)
  • Automatic content tagging (24%)
  • Natural Language Processing, NLP (22%)
  • Machine Learning (20%)

The respondents planning to start working with one of these areas are more likely to be interested in, or are already working with, the other areas in the top 5. For example, out of the respondents saying that they are planning to use a natural language search interface, 44% are planning to start with personalisation as well. If you were to add the respondents already working with personalisation to that amount, it would increase by 75%. This might not be a big surprise since the different areas are much related to one another. A natural language search interface can support a tailored search experience, in other words – lead to personalisation. Automatic content tagging can be enabled by using techniques such as NLP and Machine Learning.

A Natural Language Search interface is a way of trying to find targeted answers to user questions. Instead of search based on keywords, the goal is to understand the question and generate answers with a higher relevancy. Since a large amount of the questions asked in an organisation are similar, you could save a lot of time by clustering and/or providing answers automatically using conversational UI. Learn more about Conversational UI.

One way to improve the Natural Language Search interface is by using Natural Language Processing (NLP). The aim with NLP is to improve a computer’s speech recognition for example by interpreting synonyms and spelling mistakes. NLP started out as a rule-based technique which was manually coded, but the introduction of Machine Learning (ML) improved the technology further. By using statistical techniques, ML makes it possible to learn from data without having to manually program the computer system.  Read more about improving search with NLP.

Automatic content tagging is a trend that we see within the area of Information Management. Instead of relying on user created tags (of various quality) the tags are created automatically based on different patterns. The advantage of using automatic content tagging is that the metadata will be consistent and that the data will be easier to analyse.

Personalisation e.g. tailored search experience is a way to sort out information based on the user profile. Basically, search results are adapted to the user needs, for example by not showing things that the user do not have access to and promoting search results that the user frequently looks for. Our findings in this year’s survey, show that respondents saying they are currently working with personalisation consider that users on both the internal and extern site find information easier. Users that find the information they search for easily, tend to be more satisfied with the search solution.


Results from this year’s survey indicates that organisations are working with or planning to working with, AI and Cognitive-related techniques. The percentage doing so has grown compared to previous surveys.

Do you want to learn more about cognitive search

Author: Angelica Lahti, Findability Business Consultant

Understanding politics with Watson using Text Analytics

To understand the topics that actually are important to different political parties is a difficult task. Can text analytics together with an search index be an approach to given a better understanding?

This blog post describes how IBM Watson Explorer Content Analytics (WCA) can be used to make sense of Swedish politics. All speeches (in Swedish: anföranden) in the Swedish Parliament from 2004 to 2015 are analyzed using WCA. In total 139 110 transcribed text documents were analyzed. The Swedish language support build by Findwise for WCA is used together with a few text analytic processing steps which parses out person names, political party, dates and topics of interest. The selected topics in this analyzed are all related to infrastructure and different types of fuels.

We start by looking at how some of the topics are mentioned over time.

Analyze of terms of interets in Swedsih parlament between 2004 and 2014.

Analyze of terms of interest in Swedish parliament between 2004 and 2014.

The view shows topic which has a higher number of mentions compared to what would be expected during one year. Here we can see among other topics that the topic flygplats (airport) has a high increase in number of mentioning during 2014.

So let’s dive down and see what is being said about the topic flygplats during 2014.

Swedish political parties mentioning Bromma Airport.

Swedish political parties mentioning Bromma Airport during 2014.

The above image shows how the different political parties are mentioning the topic flygplats during the year 2014. The blue bar shows the number of times the topic flygplats was mentioned by each political party during the year. The green bar shows the WCA correlation value which indicates how strongly related a term is to the current filter. What we can conclude is that party Moderaterna mentioned flygplats during 2014 more frequently than other parties.

Reviewing the most correlated nouns when filtering on flygplats and the year 2014 shows among some other nouns: Bromma (place in Sweden), airport and nedläggning (closing). This gives some idea what was discussed during the period. By filtering on the speeches which was held by Moderaterna and reading some of them makes it clear that Moderaterna is against a closing of Bromma airport.

The text analytics and the index provided by WCA helps us both discover trending topics over time and gives us a tool for understanding who talked about a subject and what was said.

All the different topics about infrastructure can together create a single topic for infrastructure. Speeches that are mentioning tåg (train), bredband (broadband) or any other defined term for infrastructure are also tagged with the topic infrastructure. This wider concept of infrastructure can of course also be viewed over time.

Discussions in Swedish parliament mentioning the defined terms which builds up the subject infrastructure 2004 to 2015.

Discussions in Swedish parliament mentioning the defined terms which builds up the subject infrastructure 2004 to 2015.

Another way of finding which party that are most correlated to a subject is by comparing pair of facets. The following table shows parties highly related to terms regarding infrastructure and type of fuels.

Political parties highly correlated to subjects regarding infrastructure and types of fuel.

Swedish political parties highly correlated to subjects regarding infrastructure and types of fuel.

Let’s start by explain the first row in order to understand the table. Mobilnät (mobile net) has only been mentioned 44 times by Centerpartiet, but Centerpartiet is still highly related to the term with a WCA correlation value of 3.7. This means that Centerpartiet has a higher share of its speeches mentioning mobilnät compared to other parties. The table indicates that two parties Centerpartiet and Miljöpartiet are more involved about the subject infrastructure topics than other political parties.

Swedish parties mentioning the defined concept of infrastructure.

Swedish parties mentioning the defined concept of infrastructure.

Filtering on the concept infrastructure also shows that Miljöpartiet and Centerpartiet are the two parties which has the highest share of speeches mentioning the defined infrastructure topics.

Interested to dig deeper into the data? Parsing written text with text analytics is a successful approach for increasing an understanding of subjects such as politics. Using IBM Watson Explorer Content Analytics makes it easy. Most of the functionality used in this example is also out of the box functionalities in WCA.