Analyzing the Voice of Customers with Text Analytics

Understanding what your customer thinks about your company, your products and your service can be done in many different ways. Today companies regularly analyze sales statistics, customer surveys and conduct market analysis. But to get the whole picture of the voice of customer, we need to consider the information that is not captured in a structured way in databases or questionnaires.

I attended the Text Analytics Summit earlier this year in London and was introduced to several real-life implementations of how text analytics tools and techniques are used to analyze text in different ways. There were applications for text analytics within pharmaceutical industry, defense and intelligence as well as other industries, but most common at the conference were the case studies within customer analytics.

For a few years now, the social media space has boomed as platforms of all kinds of human interaction and communication, and analyzing this unstructured information found on Twitter and Facebook can give corporations deeper insight into how their customers experience their products and services. But there’s also plenty of text-based information within an organization, that holds valuable insights about their customers, for instance notes being taken in customer service centers, as well as emails sent from customers. By combining both social media information with the internally available information, a company can get a more detailed understanding of their customers.

In its most basic form, the text analytics tools can analyze how different products are perceived in different customer groups. With sentiment analysis a marketing or product development department can understand if the products are retrieved in a positive, negative or just neutral manner. But the analysis could also be combined with other data, such as marketing campaign data, where traditional structured analysis would be combined with the textual analysis.

At the text analytics conference, several exciting solutions where presented, for example an European telecom company that used voice of customer analysis to listen in on the customer ‘buzz’ about their broadband internet services, and would get early warnings when customers where annoyed with the performance of the service, before customers started phoning the customer service. This analysis had become a part of the Quality of Service work at the company.

With the emergence of social media, and where more and more communication is done digitally, the tools and techniques for text analytics has improved and we now start to see very real business cases outside the universities. This is very promising for the adaptation of text analytics within the commercial industries.