Digital recycling & knowledge growth

How do we prevent the digital debris of human clutter and mess? And to what extent will future digital platforms guide us in knowledge creation and use?

Start making sense, and the art of making sense!

People and the Post, Postal History from the Smithsonian's  National Postal Museum

People and the Post, Postal History from the Smithsonian’s National Postal Museum

Mankind’s preoccupation for much of this century has to become fully digitalized. Utilities, software, services and platforms are all becoming an ‘intertwingled’ reality for all of us. Being mobile, the blurring of the borders between the workplace and recreational life plus the ease of digital creation are creating information overloads and (out-of-sight) digital landfills. While digital content creation is cheaper to create and store, its volume and its uncared for status makes it harder for everyone else to find and consume the bits they really need (and have some provenance for peace of mind).

Fear not. A collection of emerging digital technologies exist that can both support and maintain future sustainable digital recycling – things like: Cognitive Computing, Artificial Intelligence; Natural Language Processing; Machine Learning and the like, Semantics adding meaning to shared concepts, and Graphs linking our content and information resources. With good information management practice and having the appropriate supporting tools to tinker with, there is a great opportunity to not only automate knowledge digitization but to augment it.

Automation

In the content continuum (from its creation to its disposal) there is a great need for automating processes as much as possible in order to reduce the amount of obsolete or hidden (currently value-less) digital content. Digital knowledge recycling is difficult as nearly every document or content creator is, by nature, reluctant to add further digital tags (a.k.a. metadata) describing their content or documents once they have been created. What’s more experience shows this is inefficient on a number of accounts, one of which is inconsistency.

Most digital documents (and most digital content, unless intended to sell something publicly) therefore lack the proper recycling resource descriptors that can help with e.g. classification, topic description or annotation with domain specific (shared, consistent) concepts. Such descriptions add appropriate meaning or context to content, aiding its further digital reuse (consumption). Without them, the problem of findability is likely to remain omnipresent across many intranets and searched resources.

Smartphones generate content automatically, often without the user thinking or realizing. All kinds of resource descriptors (time, place etc.) are created automatically through movement and mobile usage. With the addition of further machine learning and algorithms, online services such as Google Photos use these descriptors (and some automatic annotation of their own) to add more contextual data before classifying pictures into collections. This improved data quality (read: metadata addition and improved findability) allows us to find the pictures or timeline we want more easily.

In the very same manner, workplace content or documents can now have this same type of supporting technical platform that automatically adds additional business specific context and meaning. This could include data from users: their profiles, departments or their system user behaviour patterns.

For real organizational agility though a further extra layer of automatic annotation (tagging) and classification is needed – achieved using shared models of the business. These models can be expressed through a combination of various controlled vocabularies (taxonomies) that can be further joined through relationships (ontologies) and finally published (publicly or privately) as domain models as linked data (in graphs). Within this layer exist not just synonyms, but alternative and preferred labels, and more importantly relationships can be expressed between concepts – hence the graph: concepts being the dots (nodes) with relationships the joining lines (vertices). Using certain tools, the certain relationships between concepts can be further given a weighting.

This added layer generates a higher quality of automated context, meaning and consistency for the annotation (tagging) of content and documents alike. The very same layer feeds information architecture in the navigation of resources (e.g. websites). In Search, it helps to disambiguate between queries (e.g. apple the fruit, or apple the organization?).

This digital helper application layer works very much in the same smooth manner as e.g. Google Photos, i.e. in the background, without troubling the user.

This automation however, will not work without sustainable organizing principles, applied in information management practices and tools. We still need a bit of human touch! (Just as Google Photos added theirs behind the scenes earlier, as a work in progress)

Augmentation

This codification or digitalization of knowledge allows content to be annotated, classified and navigated more efficiently. We are all becoming more aware of the Google Knowledge Graph or the Microsoft Graph that can connect content and people. The analogy of connecting the dots in a graph is like linking digital concepts and their known relationships or values.

Augmentation can take shape in a number of forms. A user searching for a particular query can be presented not only with the most appropriate search results (via the sense-making connections and relationships) but also can be presented with related ideas they had not thought of or were unaware of – new knowledge and serendipity!

Search, semantic, and cognitive platforms have now reached a much more useful level than in earlier days of AI. Through further techniques new knowledge can also be discovered by inference, using the known relationships within the graph to fill in missing knowledge.

Key to all of this though is the building of a supporting back-end platform for continuous improvement in the content continuum. Technically, something that is easier to start than one may first suspect.

Sustainable Organising Principles to the Digital Workplace

 


View Fredric Landqvist's LinkedIn profileFredric Landqvist research blog
View Peter Voisey's LinkedIn profilePeter Voisey

Leave a Reply

Your email address will not be published. Required fields are marked *